Towards Deployable Large Scale End-point-based Multicast Streaming

György Dán, Viktória Fodor Ilias Chatzidrossos and Gunnar Karlsson

Laboratory for Communication Networks School of Electrical Engineering KTH, Royal Institute of Technology Stockholm, Sweden

Why end-point-based multicast?

- IP level multicast
 - Not widely available
- Content delivery networks
 - Cost increases with number of spectators
 - Difficult to handle sudden traffic surges
 - Dedicated infrastructure required
- End-point-based multicast
 - Peer-to-peer approach
 - Share the costs among the spectators
 - Bandwidth
 - Processing power

Pros and Issues

- Why are such systems not deployed?
 - Predictability

Controllability

• System performance evaluation

End-point-based overlays

- Control plane
 - Organize nodes into an overlay
 - Handle high join and departure rates
 - Low overhead
 - Scalable
 - Centralized
 - CoopNet, ALMI, ESM
 - Structured p2p
 - SplitStream
 - Unstructured p2p

- Data plane
 - Distribute data among nodes
 - Robustness
 - Efficiency
 - Mesh based
 - TMesh, ScatterCast
 - Tree based
 - Yoid, ALMI, OverCast, SRMS, ESM
 - Multiple tree based
 - SplitStream, CoopNet

Robustness, efficiency, relatively low delay and scalability at the same time

- Multiple data paths from the root to nodes
 - Multiple distribution trees
- Regeneration of data in nodes
 - Block based FEC (\rightarrow PET, MDC)
 - High probability of packet possession

System description

• Examples:

- Case *d*=1: was considered in SplitStream and CoopNet
- Case d=t: was considered in CoopNet
- Case 1<d<t was not considered before

Some examples

System performance

Analytical model to understand the system's behavior Sources of impairment

- Network failures
 - Packet losses with probability p between peer nodes
 - Loss propagation

- Group dynamics
 - Interruption of data flow packet loss
 - Loss propagation
 - Overlay maintenance

Performance measures:

- Probability of packet possession: $\pi(i)$
- Probability of blocking:
 - Arriving node cannot join the overlay due to lack of resources
- Probability of reconnection failure:
 - Node in the overlay cannot reconnect to the overlay after departure of another node

Mathematical model (d=t)-static

- m t (different parent in each tree)
- Initial condition: $\pi(0) = 1$
- Recurrence equation for $\pi(i)$

$$\pi(i+1) = R(\pi(i), p) = \pi(i)(1-p) + \sum_{j=k}^{n-1} \binom{n-1}{j} (\pi(i)(1-p))^j ((1-\pi(i))(1-p))^{n-j}$$

 $\pi(i)$ high if $p < p_{max}(n,k)$ - non-graceful degradation for $p > p_{max}(n,k)$

Mathematical model (d=t)-static

- Correlated losses
 - Output link
 - Does not affect the performance while n<t
 - Node departures can be thought of as bursty losses at the output link: dynamic case ~ static model
 - Input link
 - Can be modeled (e.g. using Gilbert model)
 - Correlations decrease the value of p_{max}
- Non-homogeneous losses (Distribution of losses: Q)

 $\pi(i+1) = \int R(\pi(i), p) dQ$

- Decreases performance depending on the variance of Q
- Malicious layers (e.g. DDOS)
 - High loss experienced in a particular layer
 - Recovery from losses in the lower layers

Mathematical model (d=t)-dynamic

Mathematical model (d=1)-static

- m≥t-1 for feasibility
- Recurrence equation for: $\pi_{f}(i)$
 - Probability of packet possession in fertile tree

$$\pi_f(i+1) = (1-p)\pi_f(i) + (1-(1-p)\pi_f(i))\sum_{j=k}^{n-1} \binom{n-1}{j} ((1-p)\pi_f(L-1))^j (1-(1-p)\pi_f(L-1))^{n-1-j}$$

• For
$$\pi(\mathbf{i})$$
: $\pi(i+1) = \frac{1}{n}(1-p)\pi_f(i)\sum_{j=1}^n \tau(j)\binom{n-1}{j-1}((1-p)\pi_f(L-1)^{j-1}(1-(1-p)\pi_f(L-1))^{n-1-(j-1)} + \frac{1}{n}(1-(1-p)\pi_f(i))\sum_{j=0}^{n-1}\tau(j)\binom{n-1}{j}((1-p)\pi_f(L-1)^j(1-(1-p)\pi_f(L-1))^{n-1-j}$

where $\tau(j) = \begin{cases} j & \text{if } j < k \\ n & \text{if } j \ge k \end{cases}$

- π(i) high if p<p_{max}(n,k) (like for d=t)
- $\pi \rightarrow 0$ if p>p_{max}(n,k)
- Non-graceful degradation if L high

Mathematical model (d=1)-dynamic

- Arrival process: Poisson (λ)
- Holding time distribution: Log-normal (mean $1/\mu$)
- Number of fertile nodes per tree can become unbalanced due to departures, and has to be handled by
 - Intervention: reallocation of fertile nodes *problematic if* λ , μ are high
 - Failed reconnections & blocking: retry after τ seconds in hope that balance will be restored by arrivals and departures - scalable
- Probability of blocking and failed reconnections (approximate Markovian model of spare capacity in the trees)

- Blocking and reconnection failure
 - High if m~t
 - Decrease as N increases
 - Decrease as τ increases

Generalized overlay (1<d<t)-static

- Feasible for m<t-1
- Recurrence equation for: $\pi_{f}(i)$
 - Probability of packet possession in fertile tree $\pi_{fa}(i+1) = (1-p)\pi_f(i)$ $\pi_f(i+1) = \pi_{fa}(i+1) + (1-\pi_{fa}(i+1))$

• For
$$\pi(\mathbf{i})$$
:

$$\pi(i+1) = \frac{1}{n} \sum_{j=0}^{n-d} \sum_{z=0}^{d} \tau(j+z) {d-1 \choose z} \pi_{fa}(i+1)^{z} (1-\pi_{fa}(i+1))^{d-1-z} {n-d \choose j-z} \pi_{fa}(L)^{j-z} (1-\pi_{fa}(L))^{n-d-j+z}$$

- where $\tau(j) = \begin{cases} j & \text{if } j < k \\ n & \text{if } j \ge k \end{cases}$
- π(i) high if p<p_{max}(n,k) (like for d=t)
 - $\pi \rightarrow 0$ if p>p_{max}(n,k)
 - Similar results to d=1!
 - Effects of higher L

Generalized overlay (1<d<t)-dynamic

- Effects of increasing *d*
 - Increases the number of layers and mean number of children rooted at an arbitrary node (still O(logN))
 - Decreases blocking and reconnection failure
- Probability of blocking and failed reconnections
 - Changes inverse proportional to d
 - Similar behavior as for *d*=1 but **significantly lower**

Dynamic environment

- How to adapt to the changes of the departure rate and the loss probability?
 - Domino effect: Low packet reception probability increases the departure rate \rightarrow further decrease of π
 - Feed-forward
 - Robust control considering a set of possible operating conditions ($p \in [0, p_{\omega}^{max}]$)
 - Set redundancy for stable operation at p_{ω}^{max}
 - This ensures stable operation for all $p < p_{\omega}^{max}$
 - No measurement and estimation needed in the root
 - Sub-optimal performance if losses are low
 - Feedback-based
 - Incremental redundancy

Dynamic environment

- Feedback-based mechanism
 - Measure packet reception probability (π_a)
 - Aggregation tree
 - Measurement involves only trees where the node is sterile
 - Measured value is sent to the parent node in one of the fertile trees
 - Estimation of the packet loss probability at the root
 - e.g.: p=1-π_a
 - Possible feedback rules:
 - Fuzzy control based on human knowledge
 - Based on equations for the evolution of π_a and π
 - Minimize for the worst case in the 1- α confidence interval of the estimate (min-max- α)
 - Model the evolution of π_a

Dynamic environment

- Incremental redundancy
 - Distributed solution
 - Root creates k+r trees
 - *r* trees are for redundancy only
 - LDPC codes
 - Raptor codes
 - Nodes subscribe to $k+\rho$ trees ($\rho \leq r$)
 - Choice of ρ depends on the packet reception probability that individual nodes experience
 - Nodes with high bandwidth
 - Can reach higher packet reception probability
 - Serve as reconstruction points for the stream
 - Issues
 - How to maintain capacity balanced in each tree?

Conclusions and discussion

- Analytical model of a robust p2p multicast overlay
 - Packet reception shows non-graceful degradation
 - Factors that influence the cost of the overlay maintenance reconnection failures
- Proposed general overlay
 - Shows good properties
 - Choice of optimal d
 - Future work based on analytical models
- Issues regarding deployment
 - How to set the FEC parameters
 - Feedback vs. feedforward vs. decentralized
 - How to maintain the overlay
 - Centralized
 - Distributed structured/non-structured